Amoenolide A and Related Acetylated Labdane Diterpenes from Amphiachyris amoena

Dónal P. O'Mathúna, and Raymond W. Doskotch
J. Nat. Prod., 1994, 57 (6), 767-775• DOI:
10.1021/np50108a013 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50108a013 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

AMOENOLIDE A AND RELATED ACETYLATED LABDANE DITERPENES FROM AMPHIACHYRIS AMOENA ${ }^{1}$

DÓnal P. O'Mathúna ${ }^{2}$ and Raymond W. Doskotch*
Division of Medicinal Chemistry and Pharmacognosy, College of Pbarmacy, The Ohio State University, Columbus, Ohio 43210-1291

Abstract

Four new labdane diterpenes, amoenolide A [1] and its 19-acetate [2], 6acetate $\{3]$, and 6,19-diacetate [4], were isolated from the above-ground parts of Ampbiachyris amoena and their structures established by spectral and chemical methods. High-field ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ $n m r$ assignments were made for each compound using 1 D and 2D nmr techniques including ${ }^{1} \mathrm{H}$ single-frequency spin-coupling and nOe difference experiments, one-bond and long-range carbon-hydrogen correlations, and the INADEQUATE carbon-carbon connectivity experiment. The absolute stereochemistry was established by the Horeau partial-resolution chemical method with amoenolide A and racemic 2-phenylbutyric anhydride, and by the ed exciton splitting physical method on the synthetic amoenolide A 2-acetate 6,19-dibenzoate [9].

The annual plant, Ampbiachyris amoena (Shinners) Solbrig (Compositae), one of the two species of the North American genus Amphiachyris (1), has had little phytochemical study, with only two terpenes isolated previously, one a linear monoterpene diacetate and the other a monocyclic sesquiterpene hydrocarbon (2). This report is on the isolation, structure elucidation (including absolute stereochemistry), and ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral assignments for four new labdane diterpene lactones and their derivatives. The parent diterpene, a triol, was given the name amoenolide A [1] and is the major diterpene of the above-ground parts of the plant. The other three compounds are the two monoacetates, 2 and 3, and the 6,19-diacetate, 4 . The compounds were obtained from an EtOH extract residue which was divided into fractions of differing polarities by the

$\mathbf{R}^{1} \quad \mathbf{R}^{2} \quad \mathbf{R}^{3}$

$\mathbf{1}$	H	H	H
$\mathbf{2}$	H	Ac	H
$\mathbf{3}$	H	H	Ac
$\mathbf{4}$	H	Ac	Ac
$\mathbf{5}$	Ac	Ac	Ac
$\mathbf{7}$	Ac	H	H
$\mathbf{8}$	Ac	Ac	H
$\mathbf{9}$	Ac	Bz	Bz

6

[^0]use of immiscible solvent pairs (3). The aqueous MeOH fraction was passed through a Sephadex LH-20 column to separate the terpenes from the phenolics and the terpene mixture was chromatographed on Si gel to give the reported compounds.

RESULTS AND DISCUSSION

Acetylation of the four isolated compounds $\mathbf{1 - 4}$ gave the same triacetate, 5 , thus showing the carbon skeleton, oxygenation pattern and stereochemistry to be the same for each. The spectral studies commenced on amoenolide A 6,19-diacetate [4$]$ for which the fabms with MH^{+}at $m / z 435$ supported the molecular formula, $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}$, while eims showed only a fragment peak at $m / z 315\left(\mathrm{MH}^{+}-2 \mathrm{HOAc}\right)$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectra revealed three methyl groups and an α, β-unsaturated γ-lactone with the diagnostic peaks at $\delta 5.87(\mathrm{H}-14)$ and $4.74 \mathrm{ppm}(\mathrm{H}-16, \mathrm{~s})$ (4). The ir peak at $1790 \mathrm{~cm}^{-1}$ and the end absorption in the uv region are additional features of the lactone system (4). The 2D nmr experiments $\operatorname{COSY}(5)$ and CH -correlation (6-8), and the $1 \mathrm{D}{ }^{1} \mathrm{H}$-homonuclear decoupling revealed four coupled units: C-1 through C-3, C-5 through C-7, C-11 and $\mathrm{C}-12$ to the lactone unit, and the isolated methylene at $\mathrm{C}-19$.

The heteronuclear long-range (2 - and 3 -bond) nmr coupling experiment (COLOC) (9) allowed these subunits to be connected and the quaternary carbons to be assigned. For example, the quaternary carbon at 39.14 ppm was placed at $\mathrm{C}-4$ because of coupling to $\mathrm{H}_{3}-18$ at 1.23 ppm , and $\mathrm{H}-5$ at 1.70 ppm . The $\mathrm{H}_{3}-18$ signal was also coupled to $\mathrm{C}-5$ at 54.27 ppm , as was $\mathrm{H}-3 \beta$ (1.95 ppm). In this way, two-proton coupled units were connected to give the sequence $\mathrm{C}-1$ through $\mathrm{C}-7$. The quaternary carbon at 43.12 ppm ($\mathrm{C}-10$) was coupled to $\mathrm{H}-1 \beta(2.15 \mathrm{ppm}), \mathrm{H}_{3}-20(1.10 \mathrm{ppm})$ and $\mathrm{H}-5$. The $\mathrm{H}_{3}-20$ signal also coupled to the olefinic quaternary carbon at 138.16 ppm (C-9) while the olefinic methyl (1.58 ppm) was coupled to the same carbon (C-9) and to the other olefinic carbon at $126.15 \mathrm{ppm}(\mathrm{C}-8)$, as well as to the methylene carbon at $40.80 \mathrm{ppm}(\mathrm{C}-7)$. These results supported the construction of the decalin system with placement of the hydroxymethyl group (methylene protons at 4.07 and 4.13 ppm as doublets later to be assigned as $\mathrm{H}_{2}-19$) at $\mathrm{C}-4$, and attachment of the lactone-bearing side-chain at $\mathrm{C}-9$ to complete a normal labdane skeleton. Support for the $\mathrm{C}-19$ methylene at $\mathrm{C}-4$ was obtained from the COLOC experiments on amoenolide A [1], which showed 3-bond coupling from $\mathrm{H}_{2}-19$ (3.86 and 4.51 ppm) to $\mathrm{C}-18(32.36 \mathrm{ppm})$. Of the required eight double-bond equivalents, five were accounted for by the lactone and the two acetates, and the remaining three were satisfied by the bicyclic ring system and the olefinic group. The COLOC experiment also located one acetate group. The $\mathrm{H}_{2}-19$ signal was coupled to the carbonyl carbon at 171.1 ppm as was the acetate methyl at 2.04 ppm ; thus assigning that acetate to C-19. The second acetate was placed at C-6 because acetylation of diacetate 4 to triacetate 5 caused the carbinyl proton at $3.94 \mathrm{ppm}(\mathrm{H}-2)$ to be shifted downfield to 4.99 ppm , while the other at $5.23 \mathrm{ppm}(\mathrm{H}-6)$ remained unaffected. The $\mathrm{C}-11$ resonance was distinguished from C-12 by homonuclear decoupling; irradiation at $\mathrm{H}-14$ (5.87 ppm) sharpened the $\mathrm{H}-12$ pattern and converted the $\mathrm{H}-16$ doublet to a singlet.

The stereochemical assignments of amoenolide A 6,19-diacetate [4] were made by nOe difference spectroscopy (10,11), although the coupling constants for several of the proton patterns were strong evidence for spatial designation. For example, H-2 has two large ($J=11.4 \mathrm{~Hz}$) and two small ($J=3.8 \mathrm{~Hz}$) coupling constants, which support an axial orientation, as do the values for $\mathrm{H}-6(J=11.9,8.8$, and 6.4 Hz$)$ and for $\mathrm{H}-5$ $(J=11.9 \mathrm{~Hz}$). The nOe studies as summarized in Figure 1 arranged the substituents on the top and bottom face of the decalin system and supported a trans ring junction, as well as confirming the axial positions for $\mathrm{H}-2, \mathrm{H}-5$, and H-6.

Oxidation of diacetate 4 with Jones' reagent (12) produced the 2 -ketone 6 which was extensively analyzed by 1D and 2D nmr methods. The results are given in Tables 1 and

Figure 1. Percent nOe Enhancements by Difference Spectroscopy for Amoenolide A 6,19-diacetate [4].

2, and were used to substantiate the assignments made for the starting material. The same 1D nmr (${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and nOe) and 2D nmr (COSY, CH-correlation, and COLOC) studies were also performed with amoenolide A 19-acetate [2], the 6-acetate, 3, and the $2,6,19$-triacetate, 5 . Unambiguous ${ }^{13} \mathrm{C}-\mathrm{nmr}$ assignments for the two quaternary carbons, $\mathrm{C}-13$ and $\mathrm{C}-15$, of the lactone ring could not be made from the studies performed, but these were accomplished by measurement of the transverse relaxation time (T_{1}) by the use of the inversion-recovery method (13). Because this relaxation is accomplished through the neighboring protons, $\mathrm{C}-13$ with five protons at the α-positions would relax more rapidly than C-15 with only one. Amoenolide A [1], which has no acetate carbonyls to obscure the relevant region, was chosen for the experiment at 125 MHz and showed times of 15.4 and 2.8 sec for carbons at 174.22 and 171.37 ppm , respectively. This clearly identified the former as $\mathrm{C}-15$ and the latter as $\mathrm{C}-13$. An examination of the SFORD ${ }^{13} \mathrm{C}$-nmr spectra reported in this paper always showed the $\mathrm{C}-15$ peak as a doublet with apparent $J=3.0-3.5 \mathrm{~Hz}$ when the off-resonance irradiation position was set at δ_{H} -3.0 ppm at 270 MHz . The fully ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed $J_{\mathrm{CH}}=9.1 \mathrm{~Hz}$, a two-bond coupling to $\mathrm{H}-14$; while $\mathrm{C}-13$ appeared as a tight multiplet, $\omega_{1 / 2} 17 \mathrm{~Hz}$.

In addition, the INADEQUATE carbon-carbon connectivity experiment $(14,15)$ with amoenolide $\mathrm{A}\{\mathbf{1}\}$ revealed the complete carbon network except for three bonds: C4 to $\mathrm{C}-18, \mathrm{C}-8$ to $\mathrm{C}-9$, and $\mathrm{C}-12$ to $\mathrm{C}-13$. This experiment, nonetheless, supported the assignments made earlier and unambiguously differentiated $\mathrm{C}-1$ from $\mathrm{C}-3, \mathrm{C}-8$ from C 9 , and C-11 from C-12.

Proof of the absolute stereochemistry was investigated by two procedures, the Horeau partial resolution chemical method (16) and the circular dichroic (cd) excitonsplitting physical method (17). In the chemical method, racemic 2-phenylbutyric anhydride was reacted with amoenolide A [1] to completely acylate the three hydroxyls, but only the 6-hydroxyl is on an asymmetric carbon, with the bulkiness rather different for the three substituents at $\mathrm{C}-6$. Thus, a kinetic partial resolution of the racemic reagent would be expected, relative to the other hydroxyls, although spatial hindrance from the β-faced 19-hydroxymethyl and 20-methyl could have some effect on acylation of the 2hydroxyl. The recovered 2-phenylbutyric acid showed a negative specific rotation, and, when corrected for the excess reagent required to insure complete acylation, gave an optical yield of 30%. This result supports the S-configuration at C-6 and the absolute stereochemistry of amoenolide $\mathrm{A}[\mathbf{1}]$ and its acetates as given in the drawings.

To confirm this result by the cd method an amoenolide A derivative with two
Table 1. ${ }^{1}$ H-Nmr Data for Compounds 1-8. ${ }^{\text {. }}$

[^1]Table 2. ${ }^{13} \mathrm{C}$-Nmr Data for Compounds 1-8. ${ }^{\prime}$

Carbon	Compound											
	$1{ }^{\text {b }}$	Multiplicity	${ }^{1} J_{\text {CH }}$	2	$2^{\text {b }}$	3	4	5	$5{ }^{\text {b }}$	6	7	8
C-1	47.58	,	127.1	46.52	47.29	45.93	46.42	42.54	42.29	51.89	43.21	43.02
C-2	63.73	d	138.6	64.41	63.70	64.01	64.03	67.69	68.02	209.61 s	68.09	67.92
C-3	49.66	t	126.6	47.69	47.52	45.83	47.26	42.93	43.11	50.82	44.94	42.70
C-4	41.20	s		39.20	39.76	40.52	39.14	38.90	39.15	40.10	40.51	38.87
C-5	57.15	d	124.6	56.84	57.34	54.01	54.27	54.10	54.00	53.22	56.56	56.66
C-6	68.01	d	140.7	67.94	66.76	70.19	70.36	70.11	70.03	69.80	68.14	67.35
C-7	44.60	t	125.8	44.67	46.13	40.59	40.80	40.65	40.82	40.30	43.51	44.59
C-8	126.57	s		126.82	126.59	125.78	126.15	126.42	126.03	126.73	127.43	126.90
C-9	139.12	s		138.02	139.08	138.22	138.16	137.70	138.28	135.95	137.88	137.81
C-10	43.58	s		43.40	43.42	42.93	43.12	42.93	43.11	44.47	43.34	43.02
C-11	25.72	t	124.0	25.74	25.82	25.56	25.76	25.49	25.43	25.85	25.60	25.47
C-12	29.31	t	131.9	29.45	29.39	29.22	29.41	29.44	29.36	29.41	29.46	29.35
C-13	171.37	s		170.03	171.11	$170.68^{\text {c }}$	$169.95^{\text {c }}$	169.97	170.84	169.26	170.15	169.89
C-14	114.81	d	178.9	115.41	115.03	115.00	115.41	115.49	115.13	115.65	115.33	115.28
C-15	174.22	s		174.03	174.08	174.46	173.87	173.86	174.11	173.69	174.06	173.83
C-16	73.20	t	151.0	73.10	73.16	73.20	73.01	73.00	73.17	72.94	73.06	72.93
C-17	19.22	q	125.1	19.32	19.19	18.99	19.13	19.18	18.97	19.28	19.39	19.19
C-18	32.36	q	125.8	31.39	31.70	30.30	30.75	30.91	30.87	30.63	31.73	31.24
C-19	67.76	t	140.0	68.65	67.54	65.21	67.66	67.28	67.11	68.06	68.85	67.95
C-20	22.56	q	124.6	22.74	23.11	22.78	22.66	22.42	22.10	22.87	22.23	22.51
2-MeCO								$21.49{ }^{\text {d }}$	$21.25^{\text {de }}$		21.47	21.37
$6-\mathrm{MeCO}$						21.80	20.79	$20.89^{\text {d }}$	$20.68{ }^{\text {de }}$	20.90		
$19-\mathrm{MeCO}$				21.14	20.76		21.74	$21.82^{\text {d }}$	$21.64{ }^{\text {d, },}$	21.71		20.90
2-MeCO								$170.44^{\text {c }}$	$170.21^{\text {c }}$		170.75	170.36
$6-\mathrm{MeCO}$						170.75	170.25°	$170.31^{\text {c }}$	$170.24^{\text {c }}$	170.26		
$19-\mathrm{MeCO}$				171.06	171.02		171.11	$171.07^{\text {c }}$	$170.84^{\text {c }}$	170.84		170.84

${ }^{\text {a }}$ Taken at 67.9 MHz in CDCl_{3} or stated otherwise with multiplicities determined by SFORD. The chemical shift (δ) in ppm was referenced to TMS with reference peak of solvent taken as 77.2 ppm (center). Abbreviations are $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet and $\mathrm{q}=$ quartet. Data point resolution of 0.7 Hz and J values in Hz taken from fully ${ }^{1} \mathrm{H}$-coupled spectrum.
${ }^{\mathrm{t}}$ From CH -correlation acetate protons attached to methyl carbon are $\delta_{\mathrm{H}} 2.01$ to $\delta_{\mathrm{C}} 21.25 ; 2.06$ to 20.68 ; and 2.13 to 21.64 ppm .
distantly disposed hydroxyls is required. Of the isolated products, only the 6-acetate, 3, would be useful, but its natural availability was limited. Consequently, the major isolate, amoenolide $\mathrm{A}[\mathbf{1}]$ was acetylated with one equivalent of $\mathrm{Ac}_{2} \mathrm{O}$ and the products separated by chromatography. In addition to the natural product acetates, two new acetates, amoenolide A 2 -acetate [7] and the 2,19-diacetate 8 were obtained and characterized by the same spectral methods used for the natural products. The 2 -acetate 7 was benzoylated and the cd curve of the dibenzoyl product 9 showed a Cotton effect curve with a positive maximum at 235 nm and a negative maximum at 220 nm , supporting a clockwise rotation for the benzoates (Figures 2 and 3) when viewed linearly (17). Thus, the cd exciton-splitting method confirmed the results of the Horeau procedure and hence the amoenolide A compounds have absolute stereochemistry as illustrated.

Figure 2. Drawing of Amoenolide A 2-acetate 6,19-dibenzoate [9] Showing the Absolute Stereochemistry that Would Result in a Positive Cotton Curve for the Dibenzoyl Exciton Splitting.

Figure 3. Circular Dichroic Curves for Amoenolide A 2-acetate [7] and Amoenolide A 2 acetate 6,19-dibenzoate [9].

EXPERIMENTAL

General experimental procedures.-Mps were measured on a Fisher-Johns melting-point apparatus and are uncorrected. The following instruments were used: uv, Beckman UV 5260 spectrophotometer; ir, Beckman IR 4230 spectrophotometer; optical rotations, Perkin-Elmer 241 polarimeter, cd, JascoJ-500A spectropolarimeter, ms, DuPont 21-491 and Kratos MS-30 mass spectrometers, the latter equipped with an Iontech fab gun; nmr, Bruker WM-300, AM-500, IBM AF-270 and GE-Nicolet NT-500. The fabms were obtained by dissolving the samples in a glycerol or "magic bullet" (18) matrix [dithiothreitol and dithioerythritol (3:1)] and bombarded by Xe gas accelerated at 8000 volts. Elemental analyses were performed at Galbraith Laboratories, Knoxville, TN.

The pulse programs for the nmr experiments were those provided by Bruker Instruments; COSY 16 for ${ }^{1} \mathrm{H}$ shift correlation; XHCORRD for CH -correlation with homonuclear ${ }^{1} \mathrm{H}$ decoupling; COLOC for long-range (2- to 4-bond) CH-correlation, with polarization delay $\mathrm{D} 2=0.06 \mathrm{sec}$ for $J=8 \mathrm{~Hz}$ for routine analyses and D2 $=0.03$ and 0.09 sec for $J=5$ and 17 Hz coupling for additional analyses; INADDEC for C C connectivity; INVRECX for T_{1} measurement; and NOEMULT for nOe difference experiments at 270 MHz .

Extractionand isolation.-The above-ground parts of Amphiachyris amoena (Shinners) Solbrig were collected in Texas in August 1982, and identified by Professor Meredith A. Lane, University of Colorado, Boulder, Colorado, where a voucher specimen is on file. The dried and powdered plant material (4 kg) was extracted by percolation at ambient temperature with ErOH (50 liters) and the extract was evaporated at reduced pressure at 40° to give 995 g of residue. The residue was partitioned between equal volumes of CHCl_{3} (3 times) and $\mathrm{H}_{2} \mathrm{O}$ in an initial ratio of solvents to residue of less than 10:1. The CHCl_{3} solubles (484 g) were partitioned between hexane (3 times) and $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(9: 1)$ to give 375 g of a MeOH-soluble extract which was chromatographed on Sephadex LH-20 (Pharmacia, Inc.) with MeOH in a ratio of 1:10 (sample to adsorbent). The combined terpene fraction (260 g) as revealed by tlc analysis (see below) was chromatographed first on Si gel PF 254 using a sample-to-adsorbent ratio of 1:40 and eluting solvents of CHCl_{3} containing $\mathrm{MeOH}(0.5 \%$ to $40 \%)$. The diterpenes appeared in the following effluents: 6%, diacetate 4; 10%, monoacetate $3 ; 12 \%$, monoacetate 2 ; and 15%, triol 1 ; for a total of 16 pooled fractions as monitored by tlc. Rechromatography of these fractions was on Si gel 60 in a sample to adsorbent ratio of $1: 20$ and elution by mixtures of hexane- $\mathrm{Me}_{2} \mathrm{CO}$ (4:1, 3:1, 2:1, $1: 1$, and 1:2).

Tlc was employed to monitor the separations and was performed on Si gel G (Merck) with detection by spraying the developed plates with p-anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{EtOH}(5: 5: 90)$ and heating at 110°. The terpenes gave blue-purple-gray zones, and with the solvent system of $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (17:2:1, lower phase) the R_{f} values were as follows: amoenolide $\mathrm{A}[1] 0.14,6$-acetate [3]0.21, 19-acetate [2] 0.39 , and 6,19 diacetate [4] 0.54. The prepared compounds in the same system showed R_{f} values of: 2 -acetate [7] 0.46 , 2,19-diacetate [8] 0.74, and 2,6,19-triacetate [5] 0.90 .

Amoenolide $A[1]$.-From the first column, fraction No. 13 (4.2 g) was separated on a second column of Si gel. Elution with mixtures of hexane- $\mathrm{Me}_{2} \mathrm{CO}$ gave, from the $1: 1$ mixture, 352 mg of amoenolide A [1$]$ as needle-like crystals from the eluting solvent. First column fractions No. 9-12 and 14 when similarly chromatographed yielded a total of $4.12 \mathrm{gm}\left(0.1 \%\right.$ of dried plant) of amoenolide A: mp $193-195^{\circ} ;[\boldsymbol{\alpha}]^{23.5}$. D $+78^{\circ}(c=0.5, \mathrm{MeOH})$; ir $(\mathrm{KBr}) \nu$ max 1800 and 1730 (lactone $\mathrm{C}=\mathrm{O}$), $1620(\mathrm{C}=\mathrm{C})$ and $1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; $\mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) $202 \mathrm{~nm}(\log \epsilon 4.11)$; and eims $m / z 330\left(\mathrm{M}^{+}-\mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{O}, 6\right), 314\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 32\right)$, $299(56), 296\left(\mathrm{M}^{+}-3 \mathrm{H}_{2} \mathrm{O}, 30\right), 183(92), 171$ (91) and 119 (100). Anal., calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}, \mathrm{C} 68.53, \mathrm{H}$ 8.63; found $\mathrm{C} 68.56, \mathrm{H} 8.57$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral data are given in Tables 1 and 2 , respectively.

Amoenolide A 19-acetate [2].-Fraction No. $5(3.5 \mathrm{~g})$ from the first column, crystallized from CHCl_{3} MeOH to give $1.27 \mathrm{~g}\left(0.03 \%\right.$ of dried plant) of amoenolide A 19 -acetate [2] as cubic crystals: mp $177-178^{\circ}$; $[\alpha]^{23.5}{ }^{\mathrm{D}}+41^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \nu \max 3480(\mathrm{OH}), 1790$ and $1730(\mathrm{C}=0), 1235$ and $1030(\mathrm{C}-$ O) $\mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) $203 \mathrm{~nm}(\log \in 4.24) ; c \mathrm{~d}\left(c=4.9 \times 10^{-5} \mathrm{M}, \mathrm{MeOH}\right)[\theta]_{24} 0,[\theta]_{211}-21,400$ (min) and $\{\theta]_{203} 0$; fabms (glycerol) $m / z 393\left(\mathrm{MH}^{+}, 0.2\right), 375\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 2\right), 357\left(\mathrm{MH}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 1\right)$; eims $m / z 374.2065\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 1, \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}\right.$ requires 374.2094$)$, $332\left(\mathrm{M}^{+}-\mathrm{HOAc}, 3\right), 314\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right.$, 5), $296\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 5\right)$ and 43 ($\mathrm{Ac}, 100$); and ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral data are given in Tables 1 and 2 , respectively.

A moenolide A 6-acetate [3].-First column fractions Nos. 7 and $8(2.10 \mathrm{~g})$ were chromatographed in Si gel with mixtures of hexane- $\mathrm{Me}_{2} \mathrm{CO}$ to give 19 fractions as followed by tlc. Subfraction $9(80 \mathrm{mg})$, eluted with the $3: 1$ mixture, was rechromatographed on Si gel with $\mathrm{MeOH}-\mathrm{CHCl}_{3}$ mixtures 1:99, 1:49, and 1:19. The $1: 49$ effluent yielded amoenolide A 6 -acetate $\{3]$ as a homogeneous oil $(36 \mathrm{mg})\left(9.0 \times 10^{-4} \%\right.$ of the dried plant); $[\alpha]^{23.5} \mathrm{D}+45^{\circ}(c=0.5, \mathrm{MeOH})$; ir (KBr) $v \max 1800$ and $1730(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C})$ and $1040(\mathrm{C}-$ O) $\mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) 202 nm ($\log \in 4.11$); fabms (glycerol) m/z $393\left(\mathrm{MH}^{+}, 1\right.$); eims $m / z 357$ $\left(\mathrm{MH}^{+}-2 \mathrm{H}_{2} \mathrm{O}, 0.2\right), 332\left(\mathrm{M}^{+}-\mathrm{HOAc}, 0.5\right), 314.1778\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 1, \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ requires 314.1883),
$196\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 1\right)$ and $43(\mathrm{Ac}, 100)$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectral data are given in Tables 1 and 2 , respectively.

Amoenolide A 6,19-diactate [4].-First column fraction No. 4 on chromatography on Si gel with hexane $/ \mathrm{Me}_{2} \mathrm{CO}$ mixtures gave, with the 2:1 system, amoenolide $\mathrm{A} 6,19$-diacetate [4] as a homogeneous oil ($3.1 \mathrm{~g}, 0.08 \%$ yield of the dried plant): $[\alpha]^{23.5} \mathrm{D}+69^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) v \max 3480(\mathrm{OH}), 1790$ and $1750(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C}), 1260$ (acetate $\mathrm{C}-\mathrm{O}$) and $1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) 203 nm ($\log \epsilon 4.21$); fabms (glycerol), m/z $435\left(\mathrm{MH}^{+}, 0.2\right), 375\left(\mathrm{MH}^{+}-\mathrm{HOAc}, 1\right), 357\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 0.3\right)$, $315\left(\mathrm{MH}^{+}-2 \mathrm{HOAc}, 1\right)$; eims $\mathrm{m} / \mathrm{z} 315\left(\mathrm{MH}^{+}-2 \mathrm{HOAc}, 1\right)$, $296.1720\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{HOAc}, 23, \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}\right.$ requires 296.1777) and $281(100)$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr data are given in Table 1 and 2 , respectively.

A moenolide A 2,6,19-triactate [5]. -Samples of amoenolide A [1] or its acetate derivatives [2-4] (1020 mg) were treated for 20 h in 1 ml each of $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$ was added and the mixture evaporated to dryness under reduced pressure. The residue was chromatographed on 5 g of Si gel with CHCl_{3} to give amoenolide A $2,6,19$-triacetate $\{5\}$ as a heavy oil: $[\alpha]^{23.5} \mathrm{D}+45^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \nu$ max 1790 (lactone $\mathrm{C}=\mathrm{O}$), 1750 (ester $\mathrm{C}=\mathrm{O}$), 1250 (acetate $\mathrm{C}-\mathrm{O}$), 1260 and $1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; uv (MeOH) λ (end abs) 203 nm (log $\in 4.15$); fabms (glycerol) $m / z 477\left(\mathrm{MH}^{+}, 0.3\right), 417\left(\mathrm{MH}^{+}-\mathrm{HOAc}, 0.6\right), 357$ $\left(\mathrm{MH}^{+}-2 \mathrm{HOAc}, 1\right), 297\left(\mathrm{MH}^{+}-3 \mathrm{HOAc}, 2\right)$) eims m/z $314\left(\mathrm{M}^{+}-\mathrm{HOAc}-\mathrm{OAc}-\mathrm{Ac}, 1\right), 296.1710$ (M-3HOAc, 2, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}$ requires 296.1777) and 43 ($\mathrm{Ac}, 100$). The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmrspectral data are given in Tables 1 and 2 , respectively.

2-Debydroamoenolide 6,19-diactate [6].-A 20 mg sample of amoenolide A 6,19-diacetate [4] in 1 ml of $\mathrm{Me}_{2} \mathrm{CO}$ at 0° was treated dropwise with Jones' Reagent (12) until an orange color persisted. After 5 min , 5 ml each of $\mathrm{H}_{2} \mathrm{O}$ and 5% aqueous NaHCO_{3} were added and the mixture was extracted with $10 \mathrm{ml} \mathrm{of}_{\mathrm{Et}_{2} \mathrm{O}}$ (3X). The combined $\mathrm{Et}_{2} \mathrm{O}$ extract was extracted with $25 \mathrm{ml} 5 \%$ aqueous NaHCO_{3} followed by 25 ml of $\mathrm{H}_{2} \mathrm{O}$ ($5 \times$) until the extract was neutral. The dried (anhydrous MgSO_{4}) $\mathrm{Et}_{2} \mathrm{O}$ extract was evaporated to dryness to give 18 mg of the ketone 6 as a heavy oil: $[\alpha]^{23.5} \mathrm{D}+81^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \nu \max 1790$ (lactone $\mathrm{C}=\mathrm{O}$), 1750 (ester $\mathrm{C}=\mathrm{O}$), 1720 (ketone $\mathrm{C}=\mathrm{O}$), 1250 (ester $\mathrm{C}-\mathrm{O}$) and $1040(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) $204 \mathrm{~nm}(\log \in 4.17)$; fabms (glycerol) $m / \mathrm{z} 433\left(\mathrm{MH}^{+}, 0.6\right), 373\left(\mathrm{MH}^{+}-\mathrm{HOAc}, 5\right)$, and 313 $\left(\mathrm{MH}^{+}-2 \mathrm{HOAc}, 1\right)$; eims $m / z 313.2729\left(\mathrm{M}^{+}-2 \mathrm{HOAc}, 0.5, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}\right.$ requires 313.1804), 149 (20), 57 (52), and 43 (100). The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nm}$ data are given in Tables 1 and 2 .

Horeauprocedure witt amoenolde A [1].-Amoenolide A ($5 \mathrm{mg}, 14 \mu \mathrm{~mol}$) in 0.33 ml of a 12.5% solution of 2 -phenylbutanoic anhydride ($41 \mathrm{mg}, 120 \mu \mathrm{~mol}$) in pyridine was left for 43 h at room temperature; then 3 drops of $\mathrm{H}_{2} \mathrm{O}$ were added and after 30 min the solvents were removed at reduced pressure. The residue was mixed with 5 ml each of $\mathrm{CHCl}_{3}(3 \times)$. The combined CHCl_{3} phase was taken to dryness at reduced pressure to give 11 mg ($14 \mu \mathrm{~mol}$) of 2,6,19-tri-2-phenylbutanoyl ester of amoenolide A ; fabms (glycerol) $m / z 811\left(\mathrm{MNa}^{+}, 0.7\right), 788\left(\mathrm{M}^{+}, 0.1, \mathrm{C}_{50} \mathrm{H}_{60} \mathrm{O}_{8}\right), 625\left(\mathrm{MH}^{+}-\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}, 0.2\right), 461$ $\left(\mathrm{MH}^{+}-2 \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}, 2\right), 297\left(\mathrm{MH}^{+}-3 \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}, 8\right)$ and $91(100) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 8$ 7.33-7.14 (m, ArH), $5.78(\mathrm{H}-14, \mathrm{brs}), 4.65$ and 4.57 (2 H each, $\mathrm{H}_{2}-16$ and $\mathrm{H}_{2}-19$) and $3.35 \mathrm{ppm}(\mathrm{H}-2 \mathrm{~s}, \mathrm{~m})$.

The aqueous NaHCO_{3} phase was acidified with $10 \% \mathrm{HCl}$ and extracted with $5 \mathrm{ml} \mathrm{CHCl}_{3}(3 \times)$. The combined CHCl_{3} extract after washing with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{ml})$ was evaporated to dryness to give 30 mg (183 $\mu \mathrm{mol}$) of 2-phenylbutanoic acid, identical (mp and ${ }^{1} \mathrm{H}$ nmr) with an authentic sample. The $[\alpha]^{23.5} \mathrm{D}-2.7^{\circ}$ $(c=0.5, \mathrm{MeOH})$ when corrected for excess ($8.6 \times$) reagent afforded a 30% optical yield. (-)-R-2Phenylbutyric acid has $[\alpha]^{22} \mathrm{D}-77.4^{\circ}(c=10, \mathrm{EtOH})$.

Partialacetylationof amoenolde A [1].-Amoenolide A($1.05 \mathrm{~g}, 3 \mathrm{mmol}$) in 50 ml of anhydrous pyridine was mixed with 10 ml of $3 \% \mathrm{Ac}_{2} \mathrm{O}$ in anhydrous pyridine (1 equivalent) and stirred for $3 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ (10 ml) was added and the mixture was evaporated at reduced pressure to give 1.18 g of a crystalline mass that was absorbed onto 3 g of Si gel by dissolving in 5 ml of MeOH and removing the solvent at reduced pressure. The powdered mixture was added to a 35 g column of Si gel packed in hexane. The column was eluted with hexane-Me ${ }_{2} \mathrm{CO}(4: 1),(3: 1),(2: 1)$, and (1:1). Analysis by tlc of effluent fractions using column solvents gave from the ($4: 1$) mixture 9 mg of the triacetate 5 , from the ($2: 1$) mixture 307 mg of the 19 -acetate 2, and from the ($1: 1$) mixture 464 mg of starting material $\mathbf{1}$ in addition to two new acetates which are described below.

Amoenolide A 2-acetate [7].-The hexane- $\mathrm{Me}_{2} \mathrm{CO}$ (2:1) effluent from the partial acetylation reaction gave 140 mg of crystalline 2 -acetate [7]: $\mathrm{mp} 156-158^{\circ} ;[\alpha]^{23,5} \mathrm{D}+37^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) \nu \max$ 1790 and $1760(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1390,1260$, and $1040(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) 205 nm ($\log \in 4.78$); $\mathrm{cd}\left(c=4: 1 \times 10^{-4} \mathrm{M}, \mathrm{MeOH}\right)[\theta]_{249} 0,[\theta]_{211}-12,300(\mathrm{~min})$ and $[\theta]_{203} 0 ;$ fabms (glycerol) m/z 393 $\left(\mathrm{MH}^{+}, 2\right), 375\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 1\right), 315\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 10\right)$, and $297\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 2\right)$; eims m / z $314.1915\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 4, \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ requires 314.1883), $296\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}, 2\right)$ and $43(100)$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr data are given in Tables 1 and 2, respectively.

Amoenolide A 2,19-diacetate [8].-The hexane- $\mathrm{Me}_{2} \mathrm{CO}$ (3:1) effluent from the partial acetylation reaction gave 60 mg of the 2,19 -diacetate $8: \mathrm{mp} 134-135^{\circ} ;[\alpha]^{23.5} \mathrm{D}+41^{\circ}(c=0.2, \mathrm{MeOH})$; ir $v \max 1790$ and $1750(\mathrm{C}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{C}), 1390,1260$, and $1040(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{uv}(\mathrm{MeOH}) \lambda$ (end abs) $205 \mathrm{~nm}(\mathrm{log}$ $\epsilon 4.32$); eims $m / z 374\left(\mathrm{M}^{+}-\mathrm{HOAc}, 3\right), 314\left(\mathrm{M}^{+}-2 \mathrm{HOAc}, 7\right), 296\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-2 \mathrm{HOAc}\right.$, 5); anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{7}, \mathrm{C} 66.32, \mathrm{H} 7.89$; found $\mathrm{C} 64.16, \mathrm{H} 7.85$. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectral data are given in Tables 1 and 2 , respectively.

Amoenolide A 2-acetate 6, 19-dibenzoate [9].-To a mixture of 40 mg (0.10 mmol) of amoenolide A 2acetate [7] and $10 \mathrm{mg}(0.08 \mathrm{mmol})$ of $4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{5} \mathrm{~N}$ in 1 ml of anhydrous pyridine, $0.1 \mathrm{ml}(1.1 \mathrm{mmol})$ of benzoyl chloride was added and stirred overnight at room temperature. Then, 2 ml of $\mathrm{H}_{2} \mathrm{O}$ were added and the solvent removed at reduced pressure. The residue was dissolved in $5 \mathrm{mlof} \mathrm{CHCl}_{3}$ and extracted with 5 ml of saturated aqueous NaHCO_{3} and $5 \mathrm{ml}^{\mathrm{m}} \mathrm{H}_{2} \mathrm{O}(3 \times)$. $\mathrm{The}^{\mathrm{CHCl}} \mathrm{Cl}_{3}$ phase was taken to dryness at reduced pressure and the residue chromatographed on 7 g of Si gel and eluted with $\mathrm{MePh}-\mathrm{Me} \mathrm{C}_{2} \mathrm{CO}$ (99:1), (49:1), and (19:1). The second solvent gave benzoic acid and the third solvent gave $43.4 \mathrm{mg}(0.07 \mathrm{mmol})$ of dibenzoate 9 as an amorphous solid: $[\alpha]^{23.5} \mathrm{D}+62^{\circ}(c=0.5, \mathrm{MeOH})$; ir $\left(\mathrm{CHCl}_{3}\right) v \max 1790,1750$, and $1730(\mathrm{C}=\mathrm{O})$, $1460,1280,1120,1030(\mathrm{C}-\mathrm{O})$, and $710(\mathrm{Ar}-\mathrm{H}) \mathrm{cm}^{-1}$; uv (MeOH) $\lambda \max 276 \mathrm{~nm}(\log \in 3.44), 268$ (3.55) and $222(4.51) ; c d\left(c 1.6 \times 10^{-5} \mathrm{M}, \mathrm{MeOH}\right)[\theta]_{270} 0,[\theta]_{237}+16,800(\max),[\theta]_{223} 0,[\theta]_{210}-12,300(\mathrm{~min})$ and $[\theta]_{204} 0$, [lit. values (17) for dibenzoyl esters, first and second Cotton effect maxima at 235 and 220 nm$]$; fabms ("magic bullet") m/z $623\left(\mathrm{MNa}^{+}, 1\right), 479\left(\mathrm{MH}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}, 1\right), 419\left(\mathrm{MH}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}-\mathrm{HOAc}, 1\right), 297$ $\left(\mathrm{MH}^{+}-2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}-\mathrm{HOAc}, 6\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}, 100\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) 88.02(2 \mathrm{H}, \mathrm{dm}, 0-\mathrm{ArH})$, $794(2 \mathrm{H}, \mathrm{dm}, 0-\mathrm{ArH}), 7.59-7.34(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.90$ (brs, H-14), 5.66 (ddd, $J=12.8$ and $7 \mathrm{~Hz}, \mathrm{H}-6), 5.11$ (dddd, $J=12,12,3$, and $3 \mathrm{~Hz}, \mathrm{H}-2$), $4.77(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{H}-16), 4.65$ (A of $\mathrm{ABq}, J=11 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}$), 4.23 (B of $\mathrm{ABq}, J=11 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~b}$), $2.76(\mathrm{dd}, J=18$ and $7 \mathrm{~Hz}, \mathrm{H}-7 \beta$), $2.04(\mathrm{~s}, \mathrm{Ac}), 1.98(\mathrm{~d}, J=12 \mathrm{~Hz}, \mathrm{H}-5), 1.63$ ($\mathrm{s}, \mathrm{Me}-17$), 1.41 and 1.31 ($2 \mathrm{~s}, 2 \mathrm{Me}$).

ACKNOWLEDGMENTS

We thank Professor M.A. Lane of the plant collection, Dr. C.E. Cottrell for the nmr spectra at 500 MHz and the INADEQUATE experiment, and Mr. C.R. Weisenberger and Mr. D. Chang for the mass spectra obtained from equipment at The Ohio State University Chemical Instmumentation Center. The AM-500 nmr spectrometer was funded in part by NIH Grant \#1 S10 RRO1458-01A1.

LITERATURE CITED

1. M.A. Lane, Syst. Bot., 4, 178 (1979).
2. F. Bohlmann and M. Lonitz, Pbytochemistry, 17, 453 (1978).
3. R.W. Doskotch and C.D. Hufford, J. Pharm. Sci., 58, 186 (1969).
4. F.M. Harraz and R.W. Doskotch, J. Nat. Prod., 53, 1312 (1990).
5. K. Nagayama, A. Kumar, K. Wüthrich, and R.R. Ernst, J. Magn. Reson., 40, 321 (1980).
6. A. Bax, J. Magn. Reson., 53, 517 (1983).
7. V. Rutar, J. Magn. Reson., 58, 306 (1984).
8. J.A. Wilde and P.H. Bolton, J. Magn. Reson., 59, 343 (1984).
9. H. Kessler, C. Griesinger, J. Zarbock, and H.R. Loosli, J. Magn. Reson., 57, 331 (1984).
10. D. Neuhaus, J. Magn. Reson., 53, 109 (1983).
11. M. Kinns and J.K.M. Sanders, J. Magn. Reson., 56, 518 (1984).
12. K. Bowden, I.M. Heilbron, E.R.H. Jones, and B.C.L. Weedon, J. Cbem. Soc., 39 (1946).
13. J.K.M. Sanders and B.K. Hunter, "Modern Nmr Spectroscopy," Oxford University Press, New York, 1987, pp. 61-65.
14. A.E. Derome, "Modern Nmr Techniques for Chemistry Research," Pergamon, New York, 1987, pp. 234-239.
15. D. Piveteau, M.-A. Delsuc, and J.-Y. Lallemand, J. Magn. Reson., 63, 255 (1985).
16. A. Horeau, in: "Stereochemistry, Fundamentals, and Merhods." Ed. by H.B. Kagan, Georg Thieme, Stuttgart, 1977, Vol. 3, pp. 51-94.
17. N. Harada and K. Nakanishi, "Circular Dichroic Spectroscopy," University Science Books, Mill Valley, CA, 1983, chaps. 1-3.
18. J.L. Witten, M.H. Schaffer, M. O'Shea, J.C. Cook, M.E. Hemling, and K.L. Rinehart, Jr., Biochem. Biophys. Res. Commun., 124, 350 (1984).

[^0]: ${ }^{1}$ Taken from the Ph.D. dissertation of Dónal P. O'Mathúna which was accepted by the Graduate School, The Ohio State University, in August 1988.
 ${ }^{2}$ Current address, Mount Carmel College of Nursing, Columbus, Ohio 43222.

[^1]:
 and are reported after the hm designation in brackets.
 In pyridine- d_{5} with the peak of pyridine- d_{4} set at 7.19 ppm .

